The realization space is
  [1   1   x1^2 - x1 + 1   0   0   1   x1 - 1      x1^2 - x1 + 1        0    1      x1 - 1]
  [1   0            x1^2   1   0   1        0               x1^2   x1 - 1   x1   x1^2 - x1]
  [0   0               0   0   1   1     x1^2   x1^3 - x1^2 + x1       x1   x1        x1^2]
in the multivariate polynomial ring in 1 variable over ZZ
within the vanishing set of the ideal
Ideal (-x1^10 + 4*x1^9 - 9*x1^8 + 14*x1^7 - 15*x1^6 + 11*x1^5 - 5*x1^4 + x1^3)
avoiding the zero loci of the polynomials
RingElem[x1 - 1, x1, x1^3 - 3*x1^2 + 2*x1 - 1, x1^3 - 2*x1^2 + x1 - 1, x1 - 2, x1^2 - x1 + 1, x1 + 1, 2*x1^2 - x1 + 1, x1^2 + 1]